Example

Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], \mathbf{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right], \mathbf{b}=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right], \mathbf{c}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$, and define a transformation $T: \mathbb{R}^{2}$
$\rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$, so that

$$
T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]
$$

a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
b. Find an \mathbf{x} in \mathbb{R}^{2} whose image under T is \mathbf{b}.
c. Is there more than one \mathbf{x} whose image under T is \mathbf{b} ?
d. Determine if \mathbf{c} is in the range of the transformation T.
a. $\left[\begin{array}{cc}1 & -r \\ r & \underset{~}{\mid} \\ -1 & V\end{array}\right]\left[\begin{array}{c}r \\ - \\ -\end{array}\right]=\left[\begin{array}{c}0 \\ -4 \\ -4\end{array}\right]$
b. $\left.\begin{array}{c}x_{1}-\mu x_{r}=r \\ -x_{1}+V x_{r}=-\omega\end{array}\right\} \begin{gathered}x_{r}=-\frac{1}{r} \Rightarrow r_{x_{1}}+\omega x_{r}=r \\ x_{1}=\frac{r}{r} \Rightarrow x_{r}=\frac{1}{r}\left[\begin{array}{c}-1 \\ r\end{array}\right]\end{gathered}$

d.

$$
\left.\begin{array}{l}
x_{1}-r_{r}=r_{r} \\
-x_{1}+V_{x_{r}}=\omega
\end{array}\right\} \Rightarrow x_{r}=r, x_{1}=9 \Rightarrow r_{1}+\Delta x_{\mu}=r v X
$$

$$
\underbrace{\sin }_{\sim} \dot{j} \overbrace{\sim}^{\infty}
$$

Linear mapping
Theorem
Let $\left(v_{1}, \ldots, v_{n}\right)$ be a ordered basis of finite-dimensional vector space V over the field \mathbb{F} and $\left(w_{1}, \ldots, w_{n}\right)$ an arbitrary list of any vectors in W.
Then there exists a unique linear map

$$
T: V \rightarrow W \quad \text { such that } T\left(v_{i}\right)=w_{i} .
$$

Ur 1 , $T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a_{1} m_{1}+\cdots+a_{n} m_{n}$ Proof - $\dot{\sim}$

 CE282: Linear Algebra

Linear mapping

Example
Which are linear mapping?zero map $0: V \rightarrow W \quad T(a+b)=T(a)+T(b)=0, T(\lambda a)=\lambda T(a)=0$identity map $I: V \rightarrow V \quad T(a+b)=T a+T_{b}=a+b, T(\lambda a)=\lambda T a=\lambda a$Let $T: \mathcal{P}(\mathbb{F}) \rightarrow \mathcal{P}(\mathbb{F})$ be the differentiation map defined as $T_{\mathcal{P}(z)}=\mathcal{P}(z) \quad$ بِLet $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map given by $T(x, y)=(x-2 y, 3 x+y)$ $T=\left[\begin{array}{c}1 \\ r \\ r\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$$T(x)=e^{x} \quad e^{x+y_{\neq}} \neq e^{y}+e^{y}\left(x_{1}, \ldots, x_{n}\right)=\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}, \ldots, a_{m 1} x_{1}+\cdots+a_{m n} x_{n}\right)$$T: \mathbb{F} \rightarrow \mathbb{F}$ given by $T(x)=x-1 \quad(x+y)-1=T(x+y)=T_{x}+T y=x+y-Y X$

Algebraic Operations on L(V,W)

Definition

Let S and $T \in L(V, W)$ and $\lambda \in \mathbb{F}$. The sum $S+T$ and the product λT are the linear maps from V to W defined by:

$$
(S+T)(v)=S v+T v \text { and }(\lambda T)(v)=\lambda(T v)
$$

For all $v \in V$.

Theorem

$$
\text { additive identity } \Rightarrow U(v)=0
$$

With the addition and scalar multiplication as defined above, $L(V, W)$ is a vector space.

Proof

$$
S+T=T+C B
$$

Definition

Let $T: V \rightarrow W$ be a linear map. Then the null space or kernel of T is the set of all vectors in V that map to zero:

$$
N(T)=\operatorname{Null}(T)=\{v \in V \mid T v=0\}
$$

$\square \operatorname{Nullity}(T):=\operatorname{Dim}(\operatorname{Null}(T))$

Theorem
Suppose $T \in L(V, W)$. Then null T is a subspace of V.
Proof

1) $T(0+0)=r T(0) \Rightarrow T(0)=0 \Rightarrow$ =就 0
2) $T(u+v)=T(u)+T(v)=0+0 \Rightarrow u, v \in \operatorname{null}(T) \Rightarrow u+v \in$ null T
3) $\lambda T(u)=T(\lambda u)=0 \quad \nabla \Rightarrow u \in$ null $T \Rightarrow \lambda u \in n b l t$

Theorem
Suppose $T \in L(V, W)$. Then null T is vector space.

Example

Find Null Space T?
\square zero map $0: V \rightarrow W$ all v
\square Let $T: \mathcal{P}(\mathbb{F}) \rightarrow \mathcal{P}(\mathbb{F})$ be the differentiation map defined as $T_{\mathcal{P}(z)}=\mathcal{P}(z) T(v)=C$
\square Let $T: C^{3} \rightarrow C$ be the map given by $T(x, y, z)=x+2 y+3 z$ null $T=\left[\begin{array}{c}-r y-r_{z} \\ y \\ z\end{array}\right]$

- $T(P(x))=x^{2} P(x) \quad$ nu $T=\{0\} \quad$ '
$\square \in L\left(\mathbb{F}^{\infty}\right)$ given by $T\left(x_{1}, x_{2}, \ldots\right) \rightarrow\left(x_{2}, x_{3}, \ldots\right)$ null $T=\left(x_{1}, 0,0, \ldots\right)$
When is $\operatorname{Nullity}(T)=0$? when T is infective (

Range
Theorem
Suppose $T \in L(V, W)$. Then range T is a subspace of V.
Proof (1) $T(0)=0 \Rightarrow$ Ever 1,2
(土) $\exists_{v, w} T(v)=a, T(m)=b \Rightarrow T v(m)=a+b \Rightarrow a \in$ Range T, $b \in$ Range $T=a+$ R
(4) $\exists v T(v)=a \Rightarrow T(\lambda v)=\lambda T(v)=\lambda a \Rightarrow a \in R a \operatorname{lige} T, \Rightarrow \lambda a \in$ Range T Theorem

Suppose $T \in L(V, W)$. Then range T is vector space.
تـد

Example
Find Range T?zero map $0: V \rightarrow W$ only \mathcal{O} is made Range $T=$Let $T: \mathcal{P}(\mathbb{F}) \rightarrow \mathcal{P}(\mathbb{F})$ be the differentiation map defined as $T_{\mathcal{P}(z)}=\mathcal{P}(z)$

$$
\text { Range } T=P(F) \sigma_{0} \cdot \mu v^{\prime} / v_{2}
$$

Injective and homogeneous linear equation

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one-to-one if and only if the equation $T(x)=0$ has only the trivial solution.
Proof Case 1: Ti infective $\Rightarrow \sigma_{0} T(0)=0$ U

Case $2:$

$$
\left.\left.\begin{array}{r}
T_{r}=a \\
T_{u}=a
\end{array}\right\} \Rightarrow T_{m}-T_{v}=0 \Rightarrow T(u-v)=0 \quad \begin{array}{r}
\text { only } T(0)=0
\end{array}\right\} \Rightarrow \begin{aligned}
& m-v=0 \\
& \Rightarrow w=v
\end{aligned}
$$

One-to-One and Null Space

Theorem

Let $T: V \rightarrow W$ be a linear transformation. Then T is one-to-one if and only if the equation $\operatorname{Null}(T)=\{0\}(\operatorname{Nullity}(T)=0!)$.

Proof
Eumpory

Example

Example
Let T be the linear transformation whose standard matrix is

$$
A=\left(\begin{array}{cccc}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Does } T \text { map } \mathbb{R}^{4} \text { onto } \mathbb{R}^{3} \text { ? Is } T \text { a one-to-one mapping? } \\
& N: A_{r_{x \mid}}=\text { ives spank } \mathbb{R}^{4} \text { ajvbiju. }
\end{aligned}
$$

One-to-One Linear Transformation

Important

Let $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then:
a. T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if the columns of A span \mathbb{R}^{m}.
b. T is one-to-one if and only if the columns of A are linearly independence.

Example

Let $\mathrm{T}\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$. Show that T is a one-to-one linear transformation.
Does T map \mathbb{R}^{2} onto \mathbb{R}^{3} ?

Onto Transformations

Example

Which one is surjective?
$D \in L\left(P_{5}(R)\right)$ defined by $D P=P^{\prime}$

$\square S \in L\left(P_{5}(R), P_{4}(R)\right)$ defined by $S P=P^{\prime} \rightarrow \quad \hat{N}^{n} L_{0}$

Theorem

Let V be a finite-dimensional vector space and $T \in L(V, W)$. Then rang T is finite-dimensional and

$$
\operatorname{Dim}(V)=\operatorname{Nullity}(T)+\operatorname{Dim}(\operatorname{range}(T))
$$

Proof

位

$$
v=\sum a_{i n i}+\sum b_{j} v_{j} \Rightarrow T v=\sum_{v_{-}} b_{j} T\left(v_{j}\right) \leqslant o_{0}-_{v_{j}}^{n}
$$

$$
\begin{aligned}
& \Rightarrow T\left(\sum a_{i} v_{i}\right)=0 \quad \Rightarrow \quad \sum a_{1} v_{i} \in n u l l T \\
& \Rightarrow \sum a_{i} v_{i}=\sum b_{j} u_{j} \Rightarrow \sum a_{i} v_{i}-\sum b_{j} u_{j}=0
\end{aligned}
$$

$\dot{\omega} u_{r}$ Ranget
$\operatorname{dim} V=\operatorname{dim}$ null $T+\operatorname{dim}$ range

Corollary

Linear map to a lower-dimensional space is not injective.

$$
\begin{aligned}
& \text { Ip to a lower-dimensional space is not injective. } \\
& \operatorname{dim} n \text { null } T=\operatorname{dim} V-\operatorname{dim} \operatorname{Rang} T \geqslant \gg \operatorname{dim} V>0
\end{aligned}
$$

Proof

Corollary

Linear map to a higher-dimensional space is not surjective

$$
\operatorname{dim} \text { Range } T=\operatorname{dim} V-\operatorname{dim} n u l l T \leqslant \operatorname{dim} V<\operatorname{dim} W \text {, }
$$

Proof

Example

Is T injective or not?

$$
\begin{aligned}
& T: \mathbb{F}^{4} \rightarrow \mathbb{F}^{3} \\
& T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\sqrt{7} x_{1}+\pi x_{2}+x_{4}, 97 x_{1}+3 x_{2}+2 x_{3}, x_{2}+6 x_{3}+7 x_{4}\right)
\end{aligned}
$$

